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Abstract
From the Arrhenius law a probability distribution of timescales is derived by
treating both the prefactor and the activation energy as random variables. In
the defect-diffusion model this probability distribution is used to calculate the
properties of the anomalous diffusion of defects. The timescales represent the
pausing time distribution between movements of a defect. The conditions are
determined for these mobile defects to produce stretched exponential relaxation.
The diffusion of a single defect is anomalous, but the collective effect of
all defects produces a characteristic relaxation timescale. The temperature
and pressure dependence of this timescale is used to determine conductivity,
dielectric relaxation, and viscosity.

1. Introduction

Einstein skillfully applied a random walk analysis to the problem of Brownian motion. His goal
was to determine the size of a molecule and his method exploited a fluctuation phenomenon.
His work was so successful that mathematical Brownian motion with its Gaussian probability
became a paradigm for physical fluctuations. However, the theoretical Brownian particle
velocity was infinite and not well defined. To address the velocity question, Langevin
introduced a stochastic differential equation for the velocity with additive white noise, but then
the acceleration became infinite and not well defined. Employing coloured noise produced
finite velocities and accelerations, but greatly increased the complexity of analysing the
Langevin equation.

Montroll [1] approached the random walk with a simpler model. He developed an easy
to use, but powerful, Green’s function approach for studying discrete-time random walks on
regular lattices. This approach allowed the calculation of many random walk questions. For
example, his method provided, for the first time, the exact analytical answer to the probability
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of a random walker to return to its origin. There was no explicit velocity in the original
Montroll random walk model, but velocity was there implicitly because the walker could at
most travel n lattice spacing in n jumps. Montroll and Weiss [2] generalized this discrete-
time approach to a continuous-time random walk approach. A waiting time distribution ψ(t)
was added, as a memory term, to allow the walker to pause for a random time between
jumps. Initially, this generalization to continuous-time random walks did not seem to add
much to the analysis, except to replace the step number, n, by t/〈t〉, where 〈t〉 is the mean
waiting time between jumps. As an example, the mean square displacement after time t on
a cubic lattice was proportional to t/〈t〉, instead of to n. All of this changed when Scher
and Montroll [3] investigated the jumping of charges in a amorphous semiconductor thin film.
To explain the data, they discovered the need for a waiting time distribution with an infinite
mean (actually, physically, a mean time longer than the time of the experiment was sufficient).
It is demonstrated, in the next section, that it is easy to derive such types of waiting time
distributions. The set of jump times looks like a randomized Cantor set with its sparse fractal
set of points. This has been called a fractal-time random walk [4]. This type of random walk
is employed to describe the motion of defects in glass-forming liquids. The effect of these
fractal-time defects on relaxation and transport phenomena is examined.

2. The waiting time distribution: random energies

Usually, one considers the Arrhenius law to define a timescale τ , where

τ = τ0 exp(�/kT ), (1)

where� is the activation barrier energy, T is the temperature, and the prefactor τ0 is a constant.
A probability density h(�) of activation energies � induces a probability density ψ(τ) of
waiting times τ . Note that h(�) has units of inverse energy and ψ(τ) has units of inverse time.
These probability densities are connected by

ψ(τ) dτ = h(�) d�. (2)

Choosing h(�) = (1/�0) exp(−�/�0)with�0 being the mean barrier height, and employing
equation (1) to write � as a function of τ , gives the equality

exp(−�/�0) = (τ/τ0)
−kT/�0

which together with dτ/d� = τ/kT yields

ψ(τ) = β
τ
β

0

τ 1+β , for τ > τ0, (3)

where β = kT/�0. When β < 1, we get anomalous diffusion because the first moment, the
mean waiting time 〈t〉 = ∫ ∞

0 tψ(t) dt , is infinite.

3. The waiting time distribution: random energies and random prefactors

The case when both the activation energy � and the τ0 prefactor are random variables is now
presented. Consider first the question of how to determine the probability distribution function
for the product of two random variables. Let X,Y and Z be random variables with probability
distributions f (x), g(y) and p(z).

Let Z = XY .
Then

p(z) =
∫ ∞

−∞
f

(
z

y

)

g(y)
dy

y
. (4)
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The 1/y term comes from the Jacobian J = ∂(x, y)/∂(z, y) of the transformation from (x, y)
to (z, y). The probabilities are related by

P(z, y)dz dy = F(x, y) dx dy,

where

F(x, y) = f

(
x

y

)

g(y) and p(z) =
∫ ∞

−∞
P(z, y) dy

Thus,

P(z, y) = F(x, y)J

with

J =
∣
∣
∣
∣
∂x/∂z ∂x/∂y
∂y/∂z ∂y/∂y

∣
∣
∣
∣ =

∣
∣
∣
∣

1/y −z/y2

0 1

∣
∣
∣
∣ = 1/y.

Integrating P(z, y) over y gives equation (4).
In our case, the random variables τ, τ0, and � are related by τ = τ0 exp(�/kT ).
Set X = τ0 and Y = exp(�/kT ). Note when � is zero that Y = 1, so equation (4)

becomes

p(z) =
∫ ∞

1
f (z/y)g(y)

dy

y
. (5)

Choosing f (t) = (2/
√
π) exp(−t2), so there is more weight towards smaller attempt

times t , and keeping equation (3) for the Y distribution yields

p(τ ) = 2β√
π

∫ ∞

1
exp(−τ 2/y2)

dy

y2+β . (6)

Let u = 1/y2 and du = −2/y3 dy, then

p(τ ) = β√
π

∫ 1

0
exp(−uτ 2)y3 du

y2+β

= β√
π

∫ 1

0
exp(−uτ 2)

du

u(1−β)/2 . (7)

Writing q = uτ 2 yields

p(τ ) = 1√
π

β

τ 1+β

∫ τ 2

0
exp(−q)q(β−1)/2 dq (8)

with the integral going to a constant as τ → ∞. Thus, p(τ ), at long times, behaves as 1/τ 1+β ,
the same as if the prefactor was fixed and not random.

While equations (3) and (8) have the same long-time asymptotic behaviour, their short-
time behaviour is quite different. From equation (8) p(τ ) ≈ (β/

√
π) exp(−τ 2) for small

times, while equation (3) has a minimum time τ0.
As another example, choose

f (t) = tν−1 exp(−t)/	(ν), ν > 1;
then

p(τ ) = β

	(ν)

∫ ∞

1
(τ/z)ν−1 exp(−τ/z) dz

z1+β , (9)

which can be written as

p(τ ) = β

τ 1+β	(ν)

∫ τ

0
exp(−x)xν+β−1 dx

with the familiar 1/τ 1+β behaviour at long times and βτν−1 exp(−τ )/	(ν) behaviour at short
times.
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4. The target problem

The target problem [4] refers to a target site in a sea of mobile random walkers. The problem
is to determine the probability distribution for the first time that the target is reached by any
of the walkers. Dielectric relaxation can be discussed in terms of the target problem when a
frozen-in dipole is the target and it is relaxed when it is first reached by any mobile defect that
encapsulates enough free volume to allow the dipole to rotate.

Experimentally, it has been found, for many glass-forming materials, that relaxation
phenomena, including dielectric relaxation, volumetric relaxation, stress relaxation, and
magnetization relaxation, all follow a stretched exponential relaxation over many timescales
(except at short times),


(t) = exp(−(t/τ)β), β < 1. (10)

The stretched exponential was used by Frederick Kohlrausch in 1863 in the study of creep in
silk and glass fibres. This law was rediscovered by Williams and Watts in the study of dielectric
relaxation in glass-forming materials in 1970 [5].

We assume that the glass-forming material contains a concentration c of defects and that
each defect performs a random walk. Due to the random nature of the supercooled liquid there
is a distribution of timescales for the waiting time between jumps of a defect. We denote the
waiting time probability density (between jumps of a given defect) to be ψ(t). If the mean time
to make a jump is finite, then for times much longer than the mean time many jumps will occur
and a standard type of random walk will be produced. The mean number of jumps in a time
t will be proportional to t . If the waiting time distribution has an infinite mean waiting time
then the mean number of jumps will grow more slowly than linearly with time. The algebraic
long-time asymptotic form derived in section 3, ψ(t) ≈ t−1−β , with β < 1, has the number of
jumps only growing as tβ .

Consider the problem of dielectric relaxation in a glassy material involving a frozen-in
dipole that can be relaxed only when it is hit by a mobile defect. This problem involves the
first passage time of random walkers (defects) to reach the frozen-in dipole. The mathematical
analysis of the problem is in the form of letting there be V lattice sites and letting N walkers
be initially randomly distributed among these sites, not including the origin where the dipole is
placed. The probability
(t) that none of the walkers has reached the origin by time t is given
by


(t) =
[

1 − 1

V

∑

r�=0

∫ t

0
F(r, τ ) dτ

]N

, (11)

where F(r, τ ) is the probability density that a walker starting at site r will reach the origin for
the first time at time τ . The integral allows for a first passage of a walker to the origin in the
interval (0, t). The 1/V enters as the probability of a walker starting at a particular site, and
a sum over all possible starting points for a walker is performed. The bracket calculates the
probability that a particular walker has not reached the origin and it is raised to the N th power
for the probability that none of the N walkers has yet reached the origin. The problem is easier
in the limit N → ∞, V → ∞, but with the ratio remaining constant N/V = c. In this limit,
with S(t) being the number of distinct sites a walker visits in time t ,


(t) = exp

{

−
(

c
∑

r

∫ t

0
F(r, τ ) dτ

)}

= exp(−cS(t)). (12)

The simplification involving S(t) was accomplished by noting that any of the sites from which
a walker can reach the origin in a time t are exactly the same sites a walker starting at the origin
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can reach in a time t . In three dimensions, S(t) has the following form for the random walk
jumps governed by 〈t〉 finite (β = 1) and infinite (β < 1):

cS(t) ≈ ctβ. (13)

The stretched exponential (the β < 1 case) is found to be a probability limit distribution. This
distribution has a well-defined timescale τ = c−1/β even though a single individual jump of
a single defect does not. In the next section, the behaviour of this timescale is explored as a
function of temperature and pressure. It will be seen that even though τ is well defined it will
have an essential singularity at a finite critical temperature.

5. A Vogel-like law for a diverging timescale

A second property of many glass-forming materials is that quantities such as the relaxation time
τ and the viscosity diverge as the glass transition temperature Tg is approached from above. In
terms of a timescale, the law is given by

τ = τ0 exp

(
B

T − T0

)

, (14)

where B is a constant and T0 is a temperature below the glass transition temperature. This
empirical law was first proposed by Vogel [6] in 1921, on studying the effect of temperature
on the viscosity of lubricants, and later by Fulcher [7] and Tammann and Hesse [8]. This is
to be compared to the well-known Arrhenius law, τ = ν−1

0 exp(�/kT ), introduced in 1889 to
incorporate the concept of an activation energy. The Arrhenius law was derived by Kramers, in
1940, in terms of the trajectory of a particle successfully crossing an energy barrier of height
�, with an attempt frequency of ν0. The interpretation of the parameters B and T0 in the Vogel
law is not so straightforward.

There have been several attempts to derive the Vogel law or alternative laws. In the
defect diffusion model the timescale in the stretched exponential law depends on the mobile
defect concentration. In this model, as the temperature is lowered, defects cluster to lower
the entropy. It is further assumed that the clustered defects are immobile. Thus, as the
temperature is lowered the number of mobile defects decreases and the material becomes more
viscous (rigidity begins to set in). At Tg, rigidity percolates and the glassy state is formed.
Relaxation, however, is still occurring. A phase transition in the number of mobile defects as
the temperature is lowered creates the behaviour characterized by equation (14), as is shown
below. The single defects have concentration c1. We replace c in equation (13) by c1 because
only mobile defects will cause relaxation to occur. To have a single (isolated) defect at a site,
one must first have a defect there with probability c and also have all of the z neighbouring sites
within its correlation volume unoccupied, i.e.,

c1 = c(1 − c)z (15)

with z = ξxξyξz/d3, where ξi is the defect–defect correlation length in the i th direction, and d is
the nearest-neighbour average spacing. In a mean field lattice gas model, the correlation length
ξ between the defects grows near and above a critical temperature Tc as ξi (T ) ≈ Li (

Tc
T −Tc

)1/2,
where Li is a constant with units of length and Tc is the temperature at which single defects
disappear. With increasing pressure, the nearest-neighbour mean spacing d is assumed to
decrease isotropically as d3 = d3

0 (1 − δ(T, P)), where 1 − δ(T, P) = V (T, P)/V (T, 0) is
the fractional volume change of the material as pressure increases and d0 is the mean nearest-
neighbour spacing at zero pressure. The timescale in the stretched exponential can now be
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Figure 1. Electrical conductivity versus pressure for PPG:NaCF3SO3. The solid lines are the best
fit to equation (16) with the 3/2 exponent. The results are discussed in detail in [10].

expressed as [9]

τ ≈ c−1/β
1 τ0 = c−1/βτ0 exp

(
BT 3/2

c

(T − Tc)3/2(1 − δ(T, P))

)

, (16)

where B = −(L1 L2 L3/d0)
3 ln(1 − c)/β . This is a new relaxation law that is Vogel-like with a

3/2 temperature exponent. The 3 comes from the three dimensions and the 1/2 comes from the
mean field behaviour of the correlation length. As c decreases, note that B decreases and that
the prefactor increases. Materials such as poly(propylene glycol) appear to exhibit this type of
behaviour. If it is assumed that Tc is a function of P , both the pressure and temperature effects
can be accounted for in materials such as poly(propylene glycol). When the correlation volume
grows in two dimensions, and not fully in three dimensions, then the 3/2 power is replaced by
a 2/2 power and the standard Vogel equation is obtained. Glycerol appears to exhibit standard
Vogel behaviour [10].

As an application of the defect diffusion theory consider the conductivity of an ion-doped
glass-forming material. We assume that ion can only jump when reached by a mobile defect. As
the temperature is lowered, defects aggregate to lower the entropy of the system. It is assumed
that when two defects combine to form a cluster the free volume associated with the cluster
is smaller than the total volume associated with two single defects. As the defects cluster, one
does not find large bubbles of free volume, but the immobilization of pairs with diminished free
volume. A lower temperature then implies a lower conductivity due to a smaller mobile defect
population. This is seen experimentally in figure 1.

6. Conclusions

The manner in which randomness in activation energies and prefactors in an Arrhenius law
can produce distributions with long-time tails has been explored. Although these distributions
do not have a well-defined timescale they can, in a parallel reaction scheme, produce a
stretched exponential distribution. The stretched exponential does possess a well-defined
timescale in terms of the concentration of mobile defects. An expression for this timescale
was derived that is similar to the empirical Vogel–Fulcher law with its essential singularity
at a critical temperature. We also include the pressure dependence in our expression. Once
the timescale τ is defined, we can employ the Einstein relations to determine a dielectric loss
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peak ω = 1/τ , a diffusion constant D = L2/6τ , conductivity σ = q2nD/kT , and viscosity
1/η = 6πDr/kT . One can also determine the dependence of free volume on temperature and
pressure within this theory [11].
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